Improving recommendation diversity and serendipity with an ontology-based algorithm for cold start environments

Author:

Kuznetsov StanislavORCID,Kordík PavelORCID

Abstract

AbstractEvery real-life environments where users interact with items (products, films, research expert profiles) have several development phases. In the Cold-start phase, there are almost no interactions among users and items content-based recommendation systems (RS) can only recommend based on matching the attributes of the items. In the transition state, items start to collect user interactions but still a significant number of items have too small number of interactions, RS does not allow users to discover cold items. In a regular state, where most of the items in the system have enough interactions, the recommendations often suffer from low diversity of the items within a single recommendation. This article proposes a general recommendation algorithm based on Ontological-similarity, which is designed to address all the above problems. Our experiments show that recommendations generated by our approach are consistently better in all environment development phases and increase the success rate of recommendations by almost 50% measured using ontology-aware recall, which is also introduced in this article.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3