Physical and Biological Controls on the Annual CO2 Cycle in Agua Hedionda Lagoon, Carlsbad, CA

Author:

Shipley Kenisha,Martz ToddORCID,Hales Burke,Giddings Sarah N.,Andersson Andreas

Abstract

AbstractAgua Hedionda Lagoon (AHL), a tidal estuary located on the southern California coast, supports a diverse ecosystem while serving numerous recreation activities, a marine fish hatchery, a shellfish hatchery, and the largest desalination plant in the western hemisphere. In this work, a 1-year time series of carbon dioxide data is used to establish baseline average dissolved inorganic carbon conditions in AHL. Based on a mass balance model of the outer basin of the lagoon, we propose that AHL is a source of inorganic carbon to the adjacent ocean, through advective export, at a rate of 5.9 × 106 mol C year−1, and a source of CO2 to the atmosphere of 0.21 × 106 mol C year−1 (1 mol C m−2 year−1), implying a net heterotrophic system on the order of 6.0 × 106 mol C year−1 (30 mol C m−2 year−1). Although variable with a range throughout the year of 80% about the mean, the ecosystem remained persistently heterotrophic, reaching peak rates during the summer season. Using results from the mass balance, the annual cycle of selected properties of the aqueous CO2 system (pH, pCO2, and CaCO3 saturation state) were mathematically decomposed in order to examine the relative contribution of drivers including advection, ecosystem metabolism, and temperature that act to balance their observed annual cycle. Important findings of this study include the identification of advection as a prime driver of biogeochemical variability and the establishment of a data-based estimate of mean flushing time for AHL.

Funder

NOAA Research

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Alber, M., and J.E. Sheldon. 1999. Use of a date-specific method to examine variability in the flushing times of Georgia estuaries. Estuarine, Coastal and Shelf Science 49: 469–482.

2. Bandstra, L., B. Hales, and T. Takahashi. 2006. High-frequency measurements of total CO2: Method development and first oceanographic observations. Marine Chemistry 100: 24–38. https://doi.org/10.1016/j.marchem.2005.10.009.

3. Barth, J.A., S.E. Allen, E.P. Dever, R.K. Dewey, W. Evans, R.A. Feely, J.L. Fisher, J.P. Fram, B. Hales, D. Ianson, J. Jackson, K. Juniper, O. Kawka, D. Kelley, J.M. Klymak, J. Konovsky, P.M. Kosro, A. Kurapov, E. Mayorga, P. MacCready, J. Newton, R.I. Perry, C.M. Risien, M. Robert, T. Ross, R.K. Shearman, J. Schumacker, S. Siedlecki, V.L. Trainer, S. Waterman, and C.E. Wingard. 2019. Better regional ocean observing through cross-national cooperation: a case study from the Northeast Pacific. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00093.

4. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710. https://doi.org/10.4319/lo.2012.57.3.0698.

5. Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, et al. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28: 146–159. https://doi.org/10.5670/oceanog.2015.38.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3