Exchange Flows in Tributary Creeks Enhance Dispersion by Tidal Trapping

Author:

Garcia Adrian Mikhail P.ORCID,Geyer W. Rockwell,Randall Noa

Abstract

Abstract The North River estuary (Massachusetts, USA) is a tidal marsh creek network where tidal dispersion processes dominate the salt balance. A field study using moorings, shipboard measurements, and drone surveys was conducted to characterize and quantify tidal trapping due to tributary creeks. During flood tide, saltwater propagates up the main channel and gets “trapped” in the creeks. The creeks inherit an axial salinity gradient from the time-varying salinity at their boundary with the main channel, but it is stronger than the salinity gradient of the main channel because of relatively weaker currents. The stronger salinity gradient drives a baroclinic circulation that stratifies the creeks, while the main channel remains well-mixed. Because of the creeks’ shorter geometries, tidal currents in the creeks lead those in the main channel; therefore, the creeks never fill with the saltiest water which passes the main channel junction. This velocity phase difference is enhanced by the exchange flow in the creeks, which fast-tracks the fresher surface layer in the creeks back to the main channel. Through ebb tide, the relatively fresh creek outflows introduce a negative salinity anomaly into the main channel, where it is advected downstream by the tide. Using high-resolution measurements, we empirically determine the salinity anomaly in the main channel resulting from its exchange with the creeks to calculate a dispersion rate due to trapping. Our dispersion rate is larger than theoretical estimates that neglect the exchange flow in the creeks. Trapping contributes more than half the landward salt flux in this region.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3