Sensitivity of Estuaries to Compound Flooding

Author:

Harrison Lisa M.ORCID,Coulthard Tom J.,Robins Peter E.,Lewis Matthew J.

Abstract

AbstractFluvial and surge-tide extremes can occur synchronously resulting in compound flooding in estuaries, greatly intensifying the hazard. This flood risk has the potential to increase in the future as the frequency, phasing and/or intensity of these drivers change. Improved understanding of how extreme fluvial discharge and surge-tides interact will help inform future flood mitigation methodology. In this paper, therefore, we resolve for the first time intra-estuary sensitivities to fluvial and surge-tide extremes, for two contrasting UK estuaries (Humber and Dyfi). Model simulations at hyper-spatial resolution (< 50 m) using a 2D hydrodynamic model predicted compound flooding hazards based on: (1) present-day extreme events (worst on record); (2) present-day extreme events with shifted timings of the drivers to maximise flooding; and (3) modified drivers representing projected climate change. We found that in a small estuary with short-duration, high-intensity fluvial inputs (Dyfi), flood extent is sensitive to the relative timing of the fluvial and surge-tide drivers. In contrast, the relative timing of these drivers did not affect flooding in a larger estuary with a slower fluvial response to rainfall (Humber). In the Humber, extreme fluvial inputs during a compound hazard actually reduced maximum water depths in the outer estuary, compared with a surge-tide-only event. Projected future changes in these drivers by 2100 will increase compound flooding hazards: simulated sea-level rise scenarios predicted substantial and widespread flooding in both estuaries. However, projected increases in surge-tide behaved differently to sea-level rise of the same magnitude, resulting in a greater seawater influx and more flooding. Increased fluvial volumes were the weakest driver of estuarine flooding. In this paper we show how these interactions are complex and how the hydrodynamics vary considerably between different estuaries and sites within estuaries, making it difficult to generalise, use probabilistic or use 1D approaches for assessing compound flooding hazards. Hence, we contribute new knowledge and methods for catchment-to-coast impact modelling used for flood mitigation strategies.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3