Structure and Function of Restored and Natural Salt Marshes: Implications for Ecosystem Resilience and Adaptive Potential

Author:

Crosby Sarah C.ORCID,Hudson David M.,Hughes A. Randall,Bartholet Anna,Burns Kasey T.,Donato Mary K.,Healy Devan S.,Raviraj Rebha,Sperry Katherine,Spiller Nicole C.,Susarchick Justin

Abstract

AbstractSalt marshes have ecological and economic value, but shoreline development, the increasing rate of sea-level rise, and other human impacts have caused significant loss of salt marshes. As a result, restoration of these ecosystems is widespread. For restoration and management to be effective, it is imperative to improve our understanding of marsh-building plants that serve as the ecological foundation of these habitats. Given the observed differences in characteristics between populations of smooth cordgrass, Spartina alterniflora, restoration plantings may impact the biodiversity and resilience of restored ecosystems. Understanding differences in the structural and functional outcomes of active planting of restoration sites will enable the long-term success of restoration efforts to be improved. Natural and restored salt marshes in Long Island Sound were studied in 2021–2022 for S. alterniflora genetics, biomass, stem morphology, and faunal community composition. The average genotypic diversity of S. alterniflora was more than 4 times higher in restored than in natural marshes, and differentiation between each restored site and natural sites decreased with time. No difference was observed in live S. alterniflora belowground biomass; however, mean dead belowground biomass in natural marshes was more than 3 times greater than in restored marshes. Marsh platform invertebrates differed between the restored and natural sites, with natural marsh edge habitats having 9 times higher density of Geukensia demissa and 3 times as many crab burrows than in restored marshes, but there was no detected difference in species richness or abundance of nekton at high tide. With restoration practitioners seeking resilient, self-sustaining ecosystems, it is important to evaluate whether restored marsh characteristics are consistent with those goals and modify restoration planning accordingly to incorporate genetics, structure, and function.

Funder

Connecticut Sea Grant, University of Connecticut

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3