Using Geospatial Analysis to Guide Marsh Restoration in Chesapeake Bay and Beyond

Author:

Ganju Neil K.ORCID,Ackerman Katherine V.,Defne Zafer

Abstract

AbstractCoastal managers are facing imminent decisions regarding the fate of coastal wetlands, given ongoing threats to their persistence. There is a need for objective methods to identify which wetland parcels are candidates for restoration, monitoring, protection, or acquisition due to limited resources and restoration techniques. Here, we describe a new spatially comprehensive data set for Chesapeake Bay salt marshes, which includes the unvegetated-vegetated marsh ratio, elevation metrics, and sediment-based lifespan. Spatial aggregation across regions of the Bay shows a trend of increasing deterioration with proximity to the seaward boundary, coherent with conceptual models of coastal landscape response to sea-level rise. On a smaller scale, the signature of deterioration is highly variable within subsections of the Bay: fringing, peninsular, and tidal river marsh complexes each exhibit different spatial patterns with regards to proximity to the seaward edge. We then demonstrate objective methods to use these data for mapping potential management options on to the landscape, and then provide methods to estimate lifespan and potential changes in lifespan in response to restoration actions as well as future sea level rise. We account for actions that aim to increase sediment inventories, revegetate barren areas, restore hydrology, and facilitate salt marsh migration into upland areas. The distillation of robust geospatial data into simple decision-making metrics, as well as the use of those metrics to map decisions on the landscape, represents an important step towards science-based coastal management.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3