Environmental Drivers of Nearshore Fish Community Composition and Size Structure in Glacially Influenced Gulf of Alaska Estuaries

Author:

Lundstrom Nina C.,Beaudreau Anne H.ORCID,Mueter Franz J.,Konar Brenda

Abstract

AbstractCoastal ecosystems in Alaska are undergoing rapid change due to warming and glacier recession. We used a natural gradient of glacierized to non-glacierized watersheds (0–60% glacier coverage) in two regions along the Gulf of Alaska—Kachemak Bay and Lynn Canal—to evaluate relationships between local environmental conditions and estuarine fish communities. Multivariate analyses of fish community data collected from five sites per region in 2019 showed that region accounted for the most variation in community composition, suggesting that local effects of watershed type were masked by regional-scale variables. Seasonal shifts in community composition were driven largely by the influx of juvenile Pacific salmon (Oncorhynchus spp.) in late spring. Spatiotemporal differences among fish communities were partly explained by salinity and temperature, which accounted for 19.5% of the variation in community composition. We used a multi-year dataset from Lynn Canal (2014–2019) to examine patterns of mean length for two dominant species. Generalized additive mixed models indicated that Pacific staghorn sculpin (Leptocottus armatus) mean length varied along site-specific seasonal gradients, increasing gradually through the summer in the least glacially influenced sites and increasing rapidly to an asymptote of ~ 150 mm in the most glacially influenced sites. Starry flounder (Platichthys stellatus) mean length was more strongly related to environmental conditions, increasing with temperature and turbidity. Together, our findings suggest that community compositions of estuarine fishes show greater variation at the regional scale than the watershed scale, but species-specific variation in size distributions may indicate differences in habitat quality across watershed types within regions.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3