Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: I. Trends and Drivers of Spatial Variability

Author:

Staver Lorie W.ORCID,Morris James T.,Cornwell Jeffrey C.,Stevenson J. Court,Nardin William,Hensel Philippe,Owens Michael S.,Schwark Amanda

Abstract

AbstractTidal marshes provide numerous ecosystem services, but are threatened by recent increases in global sea level rise (SLR). Marsh restoration and creation are important strategies for mitigating marsh loss, restoring ecosystem services, increasing coastal community resilience, and providing much needed habitat for threatened species. Dredged material resulting from navigation channel maintenance can provide a substrate for these restoration projects. Few studies, however, have addressed the sustainability of these marshes. The Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island, where fine-grained, nutrient-rich dredged material from upper Chesapeake Bay is being used to create > 302 ha of tidal marshes, provides a case study. The low supply of inorganic sediment is counteracted by abundant nutrients, stimulating high rates of organic matter production and elevation change. Using > 10 years of data from 39 surface elevation tables, we found that the mean low marsh rate of elevation change (7.7 ± 3.21 mm year−1) was double the mean high marsh rate (3.6 ± 0.47 mm year−1) and exceeded the natural reference marsh (3.0 ± 2.28 mm year−1) and relative SLR (5.7 mm year−1). By stimulating organic matter production, the high nutrient substrate appears to offset the low inorganic sediment inputs in mid-Chesapeake Bay. Spatial variability was correlated with initial elevation, but was also influenced by local factors that may affect sediment redistribution within the marshes.

Funder

Maryland Department of Transportation

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3