Modelling the Influence of Riverine Inputs on the Circulation and Flushing Times of Small Shallow Estuaries

Author:

Huggett Rebecca D.ORCID,Purdie Duncan A.,Haigh Ivan D.

Abstract

AbstractSimple flushing time calculations for estuarine systems can be used as proxies for eutrophication susceptibility. However, more complex methods are required to better understand entire systems. Understanding of the hydrodynamics driving circulation and flushing times in small, eutrophic, temperate estuaries is less advanced than larger counterparts due to lack of data and difficulties in accurately modelling small-scale systems. This paper uses the microtidal Christchurch Harbour estuary in Southern UK as a case study to elucidate the physical controls on eutrophication susceptibility in small shallow basins. A depth-averaged hydrodynamic model has been configured of the estuary to investigate the physical processes driving circulation with particular emphasis on understanding the impact of riverine inputs to this system. Results indicate circulation control changes from tidally to fluvially driven as riverine inputs increase. Flushing times, calculated using a particle tracking method, indicate that the system can take as long as 132 h to flush when river flow is low, or as short as 12 h when riverine input is exceptionally high. When total river flow into the estuary is less than 30 m3 s−1, tidal flux is the dominant hydrodynamic control, which results in high flushing times during neap tides. Conversely, when riverine input is greater than 30 m3 s−1, the dominant hydrodynamic control is fluvial flux, and flushing times during spring tides are longer than at neaps. The methodology presented here shows that modelling at small spatial scales is possible but highlights the importance of particle tracking methods to determine flushing time variability across a system.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3