Balancing environmental impacts and economic benefits of agriculture under the climate change through an integrated optimization system

Author:

Sedighkia Mahdi,Abdoli Asghar

Abstract

AbstractThe present study proposes a framework to mitigate impact of climate change on the rice production by maximizing the yield while the energy use and ecological impacts on the river ecosystem as the irrigation source are mitigated. Coupled general circulation model- soil and water assessment tool (SWAT) was utilized to project the impact of climate change on the stream flow. Fuzzy physical habitat simulation was applied to develop the ecological impact function of the river. Moreover, a data-driven model was developed to predict the rice yield through changing water and energy consumption. Finally, all the simulations were utilized in the structure of the optimization model in which minimizing loss of the production, greenhouse gas emission by reducing energy use and physical habitat loss were considered as the objectives. Based on the results, the Nash–Sutcliffe model efficiency coefficient of the SWAT is 0.7 that demonstrates its reliability for simulating the impact of climate change on river flow. The optimization model is able to reduce the impact of climate change on yield of production by balancing water and energy use. In the most pessimistic scenario, water use should approximately be reduced 25% for protecting river ecosystem. However, the optimization model approximately increased energy use 16% for preserving the yield of the rice. Conversely, model decreased the energy use 40% compared with the current condition due to increasing water supply. Moreover, physical habitat loss is less than 50% that means the combined optimization model is able to protect river habitats properly.

Funder

James Cook University

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3