Comparison of dense optical flow and PIV techniques for mapping surface current flow in tidal stream energy sites

Author:

McIlvenny J.ORCID,Williamson B. J.ORCID,Fairley I. A.ORCID,Lewis M.ORCID,Neill S.ORCID,Masters I.ORCID,Reeve D. E.ORCID

Abstract

AbstractMarine renewable energy site and resource characterisation, in particular tidal stream energy, require detailed flow measurements which often rely on high-cost in situ instrumentation which is limited in spatial extent. We hypothesise uncrewed aerial vehicles (UAV) offer a low-cost and low-risk data collection method for tidal stream environments, as recently techniques have been developed to derive flow from optical videography. This may benefit tidal and floating renewable energy developments, providing additional insight into flow conditions and complement traditional instrumentation. Benefits to existing data collection methods include capturing flow over a large spatial extent synchronously, which could be used to analyse flow around structures or for site characterisation; however, uncertainty and method application to tidal energy sites is unclear. Here, two algorithms are tested: large-scale particle image velocimetry using PIVlab and dense optical flow. The methods are applied on video data collected at two tidal stream energy sites (Pentland Firth, Scotland, and Ramsey Sound, Wales) for a range of flow and environmental conditions. Although average validation measures were similar (~ 20–30% error), we recommend PIVlab processed velocity data at tidal energy sites because we find bias (underprediction) in optical flow for higher velocities (> 1 m/s).

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3