Artificially intelligent models for the site-specific performance of wind turbines

Author:

Veena R.,Mathew S.ORCID,Petra M. I.

Abstract

AbstractPower developed by the wind turbines, at different wind velocities, is a key information required for the successful design and efficient management of wind energy projects. Conventionally, for these applications, manufacturer’s power curves are used in estimating the velocity–power characteristics of the turbines. However, performance of the turbines under actual field environments may significantly differ from the manufacturer’s power curves, which are derived under ‘standard’ conditions. In case of existing wind projects with sufficient performance data, the velocity–power variations can better be defined using artificially intelligent models. In this paper, we compare the performance of four such models by applying them to a 2-MW onshore wind turbine. Models based on ANN, KNN, SVM and MARS were developed and tested using the SCADA data collected from the turbine. All the AI models performed significantly better than the manufacturer’s power curve. Among the AI methods, SVM-based predictions showed the highest accuracy. A site-specific performance curve for the turbine, based on the SVM model, is presented. Wider adaptability of this approach has been demonstrated by successfully implementing the model for a 3.6-MW wind turbine, working under offshore environment. Being “site-specific data” driven, the proposed models are more accurate and hence better choice for applications like short-term wind power forecasting and pro-diagnostics of wind turbines.

Funder

Universiti Brunei Darussalam

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Reference35 articles.

1. Global Wind Energy Council, Global Wind Report 2019. https://gwec.net/global-wind-report-2019/ Accessed 12 May 2020

2. Global Wind Energy Council, Wind Power to dominate power sector growth. https://gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook-2016/; (2016). Accessed 8 June 2018

3. IEC: Wind turbine generator systems pt. 12: wind turbine power performance testing. International Electrotechnical Commission  Standard IEC 61400 (1998)

4. Mathew, S.: Wind energy: fundamentals, resource analysis and economics. Springer, Heidelberg (2006)

5. Clifton, A., Wagner, R.: Accounting for the effect of turbulence on wind turbine power curves. J. Phys. Conf. Ser. 524(1), 012109 (2014)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3