Abstract
AbstractPower developed by the wind turbines, at different wind velocities, is a key information required for the successful design and efficient management of wind energy projects. Conventionally, for these applications, manufacturer’s power curves are used in estimating the velocity–power characteristics of the turbines. However, performance of the turbines under actual field environments may significantly differ from the manufacturer’s power curves, which are derived under ‘standard’ conditions. In case of existing wind projects with sufficient performance data, the velocity–power variations can better be defined using artificially intelligent models. In this paper, we compare the performance of four such models by applying them to a 2-MW onshore wind turbine. Models based on ANN, KNN, SVM and MARS were developed and tested using the SCADA data collected from the turbine. All the AI models performed significantly better than the manufacturer’s power curve. Among the AI methods, SVM-based predictions showed the highest accuracy. A site-specific performance curve for the turbine, based on the SVM model, is presented. Wider adaptability of this approach has been demonstrated by successfully implementing the model for a 3.6-MW wind turbine, working under offshore environment. Being “site-specific data” driven, the proposed models are more accurate and hence better choice for applications like short-term wind power forecasting and pro-diagnostics of wind turbines.
Funder
Universiti Brunei Darussalam
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Environmental Engineering
Reference35 articles.
1. Global Wind Energy Council, Global Wind Report 2019. https://gwec.net/global-wind-report-2019/ Accessed 12 May 2020
2. Global Wind Energy Council, Wind Power to dominate power sector growth. https://gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook-2016/; (2016). Accessed 8 June 2018
3. IEC: Wind turbine generator systems pt. 12: wind turbine power performance testing. International Electrotechnical Commission Standard IEC 61400 (1998)
4. Mathew, S.: Wind energy: fundamentals, resource analysis and economics. Springer, Heidelberg (2006)
5. Clifton, A., Wagner, R.: Accounting for the effect of turbulence on wind turbine power curves. J. Phys. Conf. Ser. 524(1), 012109 (2014)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献