Review on the cost optimization of microgrids via particle swarm optimization

Author:

Phommixay SengthavyORCID,Doumbia Mamadou Lamine,Lupien St-Pierre David

Abstract

AbstractEconomic analysis is an important tool in evaluating the performances of microgrid (MG) operations and sizing. Optimization techniques are required for operating and sizing an MG as economically as possible. Various optimization approaches are applied to MGs, which include classic and artificial intelligence techniques. Particle swarm optimization (PSO) is one of the most frequently used methods for cost optimization due to its high performance and flexibility. PSO has various versions and can be combined with other intelligent methods to realize improved performance optimization. This paper reviews the cost minimization performances of various economic models that are based on PSO with regard to MG operations and sizing. First, PSO is described, and its performance is analyzed. Second, various objective functions, constraints and cost functions that are used in MG optimizations are presented. Then, various applications of PSO for MG sizing and operations are reviewed. Additionally, optimal operation costs that are related to the energy management strategy, unit commitment, economic dispatch and optimal power flow are investigated.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Reference134 articles.

1. Gabbar, H.A., Labbi, Y., Bower, L., Pandya, D.: Performance optimization of integrated gas and power within microgrids using hybrid PSO–PS algorithm. Int. J. Energy Res. 40(7), 971–982 (2016)

2. Zhang, Y., Gatsis, N., Giannakis, G.B.: Robust distributed energy management for microgrids with renewables. In: Smart Grid Communications (SmartGridComm), 2012 IEEE Third International Conference on 2012, pp. 510–515. IEEE

3. Maulik, A., Das, D.: Optimal operation of microgrid using four different optimization techniques. Sustain. Energy Technol. Assess. 21, 100–120 (2017)

4. Fadaee, M., Radzi, M.: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew. Sustain. Energy Rev. 16(5), 3364–3369 (2012)

5. Fathima, A.H., Palanisamy, K.: Optimization in microgrids with hybrid energy systems—a review. Renew. Sustain. Energy Rev. 45, 431–446 (2015)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3