Geometrical nonlinearities and shape effects in electromechanical models of piezoelectric bridge structures

Author:

Ohlsson Fredrik,Johannisson Pontus,Rusu CristinaORCID

Abstract

AbstractWe consider nonlinear shape effects appearing in the lumped electromechanical model of a bimorph piezoelectric bridge structure due to the interaction between the electromechanical constitutive model and the geometry of the structure. At finite proof-mass displacement and electrode voltage, the shape of the beams is no longer given by Euler-Bernoulli theory which implies that shape effects enter in both the electrical and mechanical domains and in the coupling between them. Accounting for such effects is important for the accurate modelling of, e.g., piezoelectrical energy harvesters and actuators in the regime of large deflections and voltages. We present a general method, based on a variational approach minimizing the Gibbs enthalpy of the system, for computing corrections to the nominal shape function and the associated corrections to the lumped model. The lowest order correction is derived explicitly and is shown to produce significant improvements in model accuracy, both in terms of the Gibbs enthalpy and the shape function itself, over a large range of displacements and voltages. Furthermore, we validate the theoretical model using large deflection finite element simulations of the bridge structure and conclude that the lowest order correction substantially improve the model, obtaining a level of accuracy expected to be sufficient for most applications. Finally, we derive the equations of motion for the lowest order corrected model and show how the coupling between the electromechanical properties and the geometry of the bridge structure introduces nonlinear interaction terms.

Funder

H2020 Industrial Leadership

RISE, Research Institutes of Sweden

RISE Research Institutes of Sweden

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3