Abstract
AbstractWe consider the stochastic differential equation dXt = A(Xt−)dZt, X0 = x, driven by cylindrical α-stable process Zt in , where α ∈ (0,1) and d ≥ 2. We assume that the determinant of A(x) = (aij(x)) is bounded away from zero, and aij(x) are bounded and Lipschitz continuous. We show that for any fixed γ ∈ (0,α) the semigroup Pt of the process Xt satisfies $|P_{t} f(x) - P_{t} f(y)| \le c t^{-\gamma /\alpha } |x - y|^{\gamma } ||f||_{\infty }$
|
P
t
f
(
x
)
−
P
t
f
(
y
)
|
≤
c
t
−
γ
/
α
|
x
−
y
|
γ
|
|
f
|
|
∞
for arbitrary bounded Borel function f. Our approach is based on Levi’s method.
Funder
Narodowe Centrum Nauki
Politechnika Wrocławska
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Bass, R., Chen, Z.-Q.: Systems of equations driven by stable processes, Probab. Theory Related Fields 134(2), 175–214 (2006)
2. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263–273 (1960)
3. Bogdan, K., Grzywny, T., Ryznar M.: Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266, 3543–3571 (2014)
4. Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271(1), 179–198 (2007)
5. Bogdan, K., Knopova, V., Sztonyk, P.: Heat kernel of anisotropic nonlocal operators. Doc. Math. 25, 1–54 (2020)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献