Abstract
AbstractWe study direct integrals of quadratic and Dirichlet forms. We show that each quasi-regular Dirichlet space over a probability space admits a unique representation as a direct integral of irreducible Dirichlet spaces, quasi-regular for the same underlying topology. The same holds for each quasi-regular strongly local Dirichlet space over a metrizable Luzin σ-finite Radon measure space, and admitting carré du champ operator. In this case, the representation is only projectively unique.
Funder
Sonderforschungsbereich 1060
Austrian Science Fund
European Research Council
Institute of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Albeverio, S.A., Kondrat’ev, Yu.G., Röckner, M.: Ergodicity for the Stochastic Dynamics of Quasi-invariant Measures with Applications to Gibbs States. J. Funct. Anal. 149, 415–469 (1997). https://doi.org/10.1006/jfan.1997.3099
2. Albeverio, S.A., Kondrat’ev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154(2), 444–500 (1998). https://doi.org/10.1006/jfan.1997.3183
3. Albeverio, S.A., Röckner, M.: Classical dirichlet forms on topological vector spaces — closability and a Cameron–Martin formula. J. Funct. Anal. 88, 395–436 (1990). https://doi.org/10.1016/0022-1236(90)90113-Y
4. Bianchini, S., Caravenna, L.: On the extremality, uniqueness, and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4(4), 353–454 (2009)
5. Bouleau, N., Hirsch, F.: Dirichlet forms and analysis on Wiener space. De Gruyter (1991)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献