Author:
Kazaniecki Krystian,Wojciechowski Michał
Abstract
AbstractWe study properties of the boundary trace operator on the Sobolev space $$W^1_1(\Omega )$$
W
1
1
(
Ω
)
. Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. 222(1), 1-14 2016), we define a surjective operator $$Tr: W^1_1(\Omega _K)\rightarrow X(\Omega _K)$$
T
r
:
W
1
1
(
Ω
K
)
→
X
(
Ω
K
)
, where $$\Omega _K$$
Ω
K
is von Koch’s snowflake and $$X(\Omega _K)$$
X
(
Ω
K
)
is a trace space with the quotient norm. Since $$\Omega _K$$
Ω
K
is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý
(2017) that there exists a right inverse to Tr, i.e. a linear operator $$S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)$$
S
:
X
(
Ω
K
)
→
W
1
1
(
Ω
K
)
such that $$Tr \circ S= Id_{X(\Omega _K)}$$
T
r
∘
S
=
I
d
X
(
Ω
K
)
. In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as $$\ell _1$$
ℓ
1
. As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue 2, 277-282 1979) about non-existence of the right inverse for domain $$\Omega $$
Ω
with regular boundary, which explains Banach space geometry cause for this phenomenon.
Funder
Austrian Science Fund
Narodowym Centrum Nauki
Johannes Kepler University Linz
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Bonk, M., Saksman, E., Soto, T.: Triebel-Lizorkin spaces on metric spaces via hyperbolic fillings. Indiana Univ. Math. J. 67(4), 1625–1663 (2018)
2. Brudnyi, A., Brudnyi, Y.: Methods of geometric analysis in extension and trace problems. vol. 1, volume 102 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel (2012)
3. Buckley, S., Koskela, P.: Sobolev-Poincaré implies John. Math. Res. Lett. 2(5), 577–593 (1995)
4. Carleson, L.: On the support of harmonic measure for sets of Cantor type. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 113–123 (1985)
5. Ciesielski, Z.: On the isomorphisms of the spaces $$H_{\alpha }$$ and $$m$$. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 8, 217–222 (1960)