Trace Operator on von Koch’s Snowflake

Author:

Kazaniecki Krystian,Wojciechowski Michał

Abstract

AbstractWe study properties of the boundary trace operator on the Sobolev space $$W^1_1(\Omega )$$ W 1 1 ( Ω ) . Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. 222(1), 1-14 2016), we define a surjective operator $$Tr: W^1_1(\Omega _K)\rightarrow X(\Omega _K)$$ T r : W 1 1 ( Ω K ) X ( Ω K ) , where $$\Omega _K$$ Ω K is von Koch’s snowflake and $$X(\Omega _K)$$ X ( Ω K ) is a trace space with the quotient norm. Since $$\Omega _K$$ Ω K is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to Tr, i.e. a linear operator $$S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)$$ S : X ( Ω K ) W 1 1 ( Ω K ) such that $$Tr \circ S= Id_{X(\Omega _K)}$$ T r S = I d X ( Ω K ) . In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as $$\ell _1$$ 1 . As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue 2, 277-282 1979) about non-existence of the right inverse for domain $$\Omega $$ Ω with regular boundary, which explains Banach space geometry cause for this phenomenon.

Funder

Austrian Science Fund

Narodowym Centrum Nauki

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3