Author:
Giannetti Flavia,Passarelli di Napoli Antonia,Scheven Christoph
Abstract
AbstractWe consider weak solutions $(u,\pi ):{\Omega }\to \mathbb {R}^{n}\times \mathbb {R}$
(
u
,
π
)
:
Ω
→
ℝ
n
×
ℝ
to stationary ϕ-Navier-Stokes systems of the type $ \left \{ \begin {array}{ll} -\mathrm {div~} a(x,\mathcal {E} u)+\nabla \pi +[Du]u=f \\ \mathrm {div~} u=0 \end {array} \right . $
−
div
a
(
x
,
E
u
)
+
∇
π
+
[
D
u
]
u
=
f
div
u
=
0
in ${\Omega }\subset \mathbb {R}^{n}$
Ω
⊂
ℝ
n
, and to the corresponding ϕ-Stokes systems, in which the convective term [Du]u does not appear. In the above system, the function a(x,ξ) depends Hölder continuously on x and satisfies growth conditions with respect to the second variable expressed through a Young function ϕ. The notation $\mathcal {E} u$
E
u
is used for the symmetric part of the gradient Du. We prove results on the fractional higher differentiability of both the symmetric part of the gradient $\mathcal {E} u$
E
u
and of the pressure π.
Funder
Universität Duisburg-Essen
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: On fractional Orlicz-Sobolev spaces. Anal. Math. Phys. 11(2), 84 (2021)
3. Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill (1974)
4. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics, 2nd edn Wiley (1987)
5. Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229(2), 503–545 (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献