Abstract
AbstractIn this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted Lq-maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt $A_{\infty }$
A
∞
-class. In the Besov space case we have the restriction that the microscopic parameter equals to q. Going beyond the Ap-range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. Alòs, E., Bonaccorsi, S.: Stability for stochastic partial differential equations with D,irichlet white-noise boundary conditions. Infin. Dimens. Anal. Quantum Probab. Relat Top. 5(4), 465–481 (2002)
2. Amann, H.: Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston. Abstract linear theory (1995)
3. Amann, H. : Linear and quasilinear parabolic problemsVol. II, volume 106 of Monographs in Mathematics. Birkhäuser/Springer, Cham. Function spaces (2019)
4. Amann, H.: Linear and quasilinear parabolic problems. Vol. II, volume 106 of Monographs in Mathematics. Birkhäuser/Springer, Cham. Function spaces (2019)
5. Arendt, W., Duelli, M.: Maximal lp-regularity for parabolic and elliptic equations on the line. J. Evol. Equ. 6(4), 773–790 (2006)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献