Differentiability of the Nonlocal-to-local Transition in Fractional Poisson Problems

Author:

Jarohs Sven,Saldaña Alberto,Weth Tobias

Abstract

AbstractLet $$u_{s}$$ u s denote a solution of the fractional Poisson problem $$\begin{aligned} (-\Delta )^{s} u_{s} = f\quad \text { in }\Omega ,\qquad u_{s}=0\quad \text { on }{\mathbb {R}}^{N}\setminus \Omega , \end{aligned}$$ ( - Δ ) s u s = f in Ω , u s = 0 on R N \ Ω , where $$N\ge 2$$ N 2 and $$\Omega \subset {\mathbb {R}}^{N}$$ Ω R N is a bounded domain of class $$C^{2}$$ C 2 . We show that the solution mapping $$s\mapsto u_{s}$$ s u s is differentiable in $$L^\infty (\Omega )$$ L ( Ω ) at s = 1, namely, at the nonlocal-to-local transition. Moreover, using the logarithmic Laplacian, we characterize the derivative $$\partial _{s} u_{s}$$ s u s as the solution to a boundary value problem. This complements the previously known differentiability results for s in the open interval (0, 1). Our proofs are based on an asymptotic analysis to describe the collapse of the nonlocality of the fractional Laplacian as s approaches 1. We also provide a new representation of $$\partial _{s} u_{s}$$ s u s for s$$\in (0,1)$$ ( 0 , 1 ) which allows us to refine previously obtained Green function estimates.

Funder

UNAM-DGAPA-PAPIIT

onsejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Abatangelo, N.: Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Continuous Dyn. Syst. 35(12), 5555 (2015)

2. Abatangelo, N.. Higher-order fractional Laplacians: an overview. In: Bruno Pini Mathematical Analysis : Seminar 2021, volume 12 of Bruno Pini Math. Anal. Semin. 53–80. Univ. Bologna, Alma Mater Stud., Bologna, (2022)

3. Abatangelo, N., Jarohs, S., Saldaña, A.: Integral representation of solutions to higher-order fractional Dirichlet problems on balls. Commun. Contemp. Math. 20(08), 1850002 (2018)

4. Abatangelo, N., Jarohs, S., Saldana, A.: Fractional Laplacians on ellipsoids. Eng. Math. 3(5), Paper No. 38, 34 p. (2021)

5. Biccari, U., Hernández-Santamaría, V.: The Poisson equation from non-local to local. Electr. J. Differ. Equ. Paper No. 145, 13 p. (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3