Lie Symmetries of Fundamental Solutions to the Leutwiler-Weinstein Equation

Author:

Aksenov Aleksandr V.,Orelma Heikki

Abstract

AbstractIn this article, we study Lie symmetries to fundamental solutions to the Leutwiler-Weinstein equation $$ Lu:={\Delta} u+\frac{k}{x^{n}}\frac{\partial u}{\partial x^{n}}+\frac{\ell}{(x^{n})^{2}}u=0 $$ L u : = Δ u + k x n u x n + ( x n ) 2 u = 0 in the upper half-space $\mathbb {R}^{n}_{+}$ + n . Starting from the infinitesimal generators of the equation Lu = 0, we deduce symmetries of the equation Lu = δ(xx0), and using its invariant solutions, we construct a fundamental solution. As an application, we study a Green functions of the operator in the hyperbolic unit ball.

Funder

Tampereen Yliopisto

Publisher

Springer Science and Business Media LLC

Subject

Analysis

Reference25 articles.

1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)

2. Akin, Ö., Leutwiler, H.: On the invariance of the solutions of the Weinstein equation under Möbius transformations. Classical and modern potential theory and applications (Chateau de Bonas, 1993), 19–29. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer Acad. Publ., Dordrecht (1994)

3. Aksenov, A.V.: Fundamental solution of equations in displacements for a transversely isotropic elastic medium (Russian). Dokl. Akad. Nauk 470(5), 514–518 (2016). translation in Dokl. Math. 94 (2016), no. 2, 598–601

4. Aksenov, A.V.: Method of construction of the Riemann function for a second-order hyperbolic equation. J. Phys.: Conf. Ser. 937, 012001 (2017)

5. Aksenov, A.V.: Symmetries of linear partial differential equations, and fundamental solutions (Russian). Dokl. Akad. Nauk 342(2), 151–153 (1995)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3