Abstract
AbstractIn this paper we prove (global) q- Poincaré inequalities for probability measures on nilpotent Lie groups with filiform Lie algebra of any length. The probability measures under consideration have a density with respect to the Haar measure given as a function of a suitable homogeneous norm.
Funder
Horizon 2020
FWO
Universitair Ziekenhuis Gent
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Adams, R.A.: General logarithmic Sobolev inequalities and Orlicz imbeddings. Jour. Funct. Anal. 34(2), 292–303 (1979)
2. Bakry, D., Baudoin, F., Bonnefont, M., Chafai, D.: On gradient bounds for the heat kernel on the Heisenberg group. (English summary) J. Funct. Anal. 255(8)1905-1938 (2008)
3. Bellaïche, A., Risler, J.J.: (eds.) Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel (1996)
4. Bobkov, S.G., Zegarlinski, B.: Entropy bounds and isoperimetry. Mem. AMS, Vol. 176, Nr 829 (2005). http://dx.doi.org/10.1090/memo/0829
5. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Startified Lie Groups and Potential Theory for their Sub-Laplacians. Springer Monographs in Mathematics, Springer (2007)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献