Author:
Grigoryan Armen,Michalski Andrzej,Partyka Dariusz
Abstract
AbstractLet I be a line segment in the complex plane $$\mathbb C$$
C
. We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\mathbb C$$
C
onto itself, which is harmonic in $$\mathbb C\setminus I$$
C
\
I
and coincides with a given sufficiently regular function $$f:I\rightarrow \mathbb C$$
f
:
I
→
C
. As a result we show that a quasiconformal self-mapping of $$\mathbb C$$
C
which is harmonic in $$\mathbb C\setminus I$$
C
\
I
does not have to be harmonic in $$\mathbb C$$
C
.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2 ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag New York (2001)
2. Bshouty, D., Hengartner, W.: Univalent harmonic mappings in the plane. Ann. Univ. Mariae Curie-Skłodowska Sect. A 48, 12–42 (1994)
3. Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9, 3–25 (1984)
4. Duren, P.: Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge (2004)
5. Grigoryan, A.: Slit univalent harmonic mappings. Rocky Mountain J. Math. 46(1), 169–187 (2016)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献