Abstract
AbstractWe study the local regularity of solutions f to the integro-differential equation
$$ Af=g \quad \text{in } U $$
A
f
=
g
in
U
for open sets $U \subseteq \mathbb {R}^{d}$
U
⊆
ℝ
d
, where A is the infinitesimal generator of a Lévy process (Xt)t≥ 0. Under the assumption that the transition density of (Xt)t≥ 0 satisfies a certain gradient estimate, we establish interior Schauder estimates for both pointwise and weak solutions f. Our results apply for a wide class of Lévy generators, including generators of stable Lévy processes and subordinated Brownian motions.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Bass, R.F.: Regularity results for stable-like operators. J. Funct. Anal. 259, 2693–2722 (2009)
2. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter (1991)
3. Dellacherie, C., Meyer, P.-A.: Théorie du Potentiel Associée à une Résolvante - Théorie des Processus de Markov. Hermann, Paris (1987)
4. de Raynal, P., Menozzi, S., Priola, E.: Schauder estimates for drifted fractional operators in the supercritical case. J. Funct. Anal. 128. https://doi.org/10.1016/j.jfa.2019.108425 (2020)
5. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33, 2319–2347 (2012)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献