Author:
Moreno Álvaro Miguel,Peláez José Ángel,de la Rosa Elena
Abstract
AbstractWe establish new characterizations of the Bloch space $$\mathcal {B}$$
B
which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function $$f(z)=\sum _{n=0}^\infty \widehat{f}(n) z^n$$
f
(
z
)
=
∑
n
=
0
∞
f
^
(
n
)
z
n
in the unit disc $$\mathbb {D}$$
D
, we define the fractional derivative $$ D^{\mu }(f)(z)=\sum \limits _{n=0}^{\infty } \frac{\widehat{f}(n)}{\mu _{2n+1}} z^n $$
D
μ
(
f
)
(
z
)
=
∑
n
=
0
∞
f
^
(
n
)
μ
2
n
+
1
z
n
induced by a radial weight $$\mu $$
μ
, where $$\mu _{2n+1}=\int _0^1 r^{2n+1}\mu (r)\,dr$$
μ
2
n
+
1
=
∫
0
1
r
2
n
+
1
μ
(
r
)
d
r
are the odd moments of $$\mu $$
μ
. Then, we consider the space $$ \mathcal {B}^\mu $$
B
μ
of analytic functions f in $$\mathbb {D}$$
D
such that $$\Vert f\Vert _{\mathcal {B}^\mu }=\sup _{z\in \mathbb {D}} \widehat{\mu }(z)|D^\mu (f)(z)|<\infty $$
‖
f
‖
B
μ
=
sup
z
∈
D
μ
^
(
z
)
|
D
μ
(
f
)
(
z
)
|
<
∞
, where $$\widehat{\mu }(z)=\int _{|z|}^1 \mu (s)\,ds$$
μ
^
(
z
)
=
∫
|
z
|
1
μ
(
s
)
d
s
. We prove that $$\mathcal {B}^\mu $$
B
μ
is continously embedded in $$\mathcal {B}$$
B
for any radial weight $$\mu $$
μ
, and $$\mathcal {B}=\mathcal {B}^\mu $$
B
=
B
μ
if and only if $$\mu \in \mathcal {D}=\widehat{\mathcal {D}}\cap \check{\mathcal {D}}$$
μ
∈
D
=
D
^
∩
D
ˇ
. A radial weight $$\mu \in \widehat{\mathcal {D}}$$
μ
∈
D
^
if $$\sup _{0\le r<1}\frac{\widehat{\mu }(r)}{\widehat{\mu }\left( \frac{1+r}{2}\right) }<\infty $$
sup
0
≤
r
<
1
μ
^
(
r
)
μ
^
1
+
r
2
<
∞
and a radial weight $$\mu \in \check{\mathcal {D}}$$
μ
∈
D
ˇ
if there exist $$K=K(\mu )>1$$
K
=
K
(
μ
)
>
1
such that $$\inf _{0\le r<1}\frac{\widehat{\mu }(r)}{\widehat{\mu }\left( 1-\frac{1-r}{K}\right) }>1.$$
inf
0
≤
r
<
1
μ
^
(
r
)
μ
^
1
-
1
-
r
K
>
1
.
Funder
Ministerio de Ciencia e Innovación
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Choe, B.R., Rim, K.S.: Fractional derivatives of Bloch functions, growth rate, and interpolation. Acta Math. Hungar. 72(1–2), 67–86 (1996)
2. Duren, P.: Theory of $$H^p$$ spaces. Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London 1970 xii+258 pp (2023)
3. Hardy, G.H., Littlewood, J.L.: Some properties of fractional integrals. II. Math. Z. 34(1), 403–439 (1932)
4. Jevtić, M., Pavlović, M.: On multipliers from $$H^p$$ to $$l^q$$, $$0
5. Pavlović, M.: Introduction to function spaces on the Disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Beograd, 2004. available online at: http://f3.tiera.ru/2/M_Mathematics/MC_Calculus/MCc_Complex%20variable/Pavlovic%20M.%20