Harmonic Bergman Projectors on Homogeneous Trees

Author:

De Mari FilippoORCID,Monti MatteoORCID,Vallarino MariaORCID

Abstract

AbstractIn this paper we investigate some properties of the harmonic Bergman spaces $$\mathcal A^p(\sigma )$$ A p ( σ ) on a q-homogeneous tree, where $$q\ge 2$$ q 2 , $$1\le p<\infty $$ 1 p < , and $$\sigma $$ σ is a finite measure on the tree with radial decreasing density, hence nondoubling. These spaces were introduced by J. Cohen, F. Colonna, M. Picardello and D. Singman. When $$p=2$$ p = 2 they are reproducing kernel Hilbert spaces and we compute explicitely their reproducing kernel. We then study the boundedness properties of the Bergman projector on $$L^p(\sigma )$$ L p ( σ ) for $$1<p<\infty $$ 1 < p < and their weak type (1,1) boundedness for radially exponentially decreasing measures on the tree. The weak type (1,1) boundedness is a consequence of the fact that the Bergman kernel satisfies an appropriate integral Hörmander’s condition.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Analysis

Reference22 articles.

1. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana 18(2), 443–510 (2002)

2. Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.: Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41(2), 317–366 (2014)

3. Békollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de $$\mathbb{C} ^{n}$$. Studia Math. 71(3), 305–323 (1982)

4. Békollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Sér. A-B 286(18), A775–A778 (1978)

5. Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M.M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5, (2004)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Horocyclic harmonic Bergman spaces on homogeneous trees;Analysis and Applications;2024-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3