Abstract
AbstractIn this paper we investigate some properties of the harmonic Bergman spaces $$\mathcal A^p(\sigma )$$
A
p
(
σ
)
on a q-homogeneous tree, where $$q\ge 2$$
q
≥
2
, $$1\le p<\infty $$
1
≤
p
<
∞
, and $$\sigma $$
σ
is a finite measure on the tree with radial decreasing density, hence nondoubling. These spaces were introduced by J. Cohen, F. Colonna, M. Picardello and D. Singman. When $$p=2$$
p
=
2
they are reproducing kernel Hilbert spaces and we compute explicitely their reproducing kernel. We then study the boundedness properties of the Bergman projector on $$L^p(\sigma )$$
L
p
(
σ
)
for $$1<p<\infty $$
1
<
p
<
∞
and their weak type (1,1) boundedness for radially exponentially decreasing measures on the tree. The weak type (1,1) boundedness is a consequence of the fact that the Bergman kernel satisfies an appropriate integral Hörmander’s condition.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana 18(2), 443–510 (2002)
2. Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.: Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41(2), 317–366 (2014)
3. Békollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de $$\mathbb{C} ^{n}$$. Studia Math. 71(3), 305–323 (1982)
4. Békollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Sér. A-B 286(18), A775–A778 (1978)
5. Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M.M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5, (2004)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献