On the equivalence of ionospheric-free, differenced, and undifferenced, uncombined GNSS network processing

Author:

Platz Hans DanielORCID

Abstract

AbstractGlobal Navigation Satellite System (GNSS) observations are commonly processed using various established methods, including the processing of ionospheric-free (IF) linear combinations (LC), differences of observations as well as the processing of undifferenced, uncombined (UDUC) observations. The most general and flexible approach to GNSS processing is widely regarded to be the UDUC approach, as this approach is based on the raw observation equations of potentially all available observations. The IF approach uses IF-LC obtained by observations on different frequencies but the same receiver-satellite link to eliminate the ionospheric slant delay. The differencing approach also uses LC of observations, with the distinction that observations of the same signal but different receivers and/or satellites are being used. The purpose of differencing is the elimination of satellite/receiver clocks and biases and, in some cases, reducing or even eliminating atmospheric delays. We aim to uncover the implicit model assumptions made when using various IF and differencing approaches and in what case they are equivalent to the processing of the UDUC observations. This is achieved by introducing a reformulation method, which is then applied to the UDUC observations of code division multiple access GNSS to obtain the functional models of various IF and differencing approaches. The underlying assumptions in this reformulation can then be identified. The results of this theoretical contribution will provide insight into the most appropriate method for processing GNSS observations in different cases and what implicit assumptions are being made when the respective method is being used.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3