Evaluation of tropospheric estimates from CentipedeRTK, a collaborative network of low-cost GNSS stations

Author:

Bosser Pierre,Ancelin Julien,Métois Marianne,Rolland Lucie,Vidal Maurin

Abstract

AbstractThe CentipedeRTK network is a collaborative Global Navigation Satellite System (GNSS) network launched in 2019, consisting mainly of low-cost GNSS receivers and antennas. This network enables free Real-Time Kinematic (RTK) positioning with centimeter accuracy for all users. The raw GNSS measurements from the CentipedeRTK network are routinely archived by the French scientific network RÉseau NAtional GNSS permanent, with the aim of exploiting raw GNSS measurements for geoscience applications. This paper presents a first assessment of the use of this dataset for tropospheric monitoring. We considered all the data provided in 2023 by more than 400 low-cost GNSS stations in mainland France. After selecting the stations with dual-frequency observations over the period, the data of 331 stations were analyzed using precise point positioning , resulting in a set of 265 stations satisfying our screening procedure and providing data covering more than 50% of the year 2023. A first indication of the quality of the analysis is given by the repeatability of the stations, of the order of $$2.2\pm 1.1$$ 2.2 ± 1.1 , $$2.1\pm 0.8$$ 2.1 ± 0.8 and $$6.9\pm 2.6$$ 6.9 ± 2.6  mm respectively on the East, North and Up components. These values are slightly higher than those obtained for nearby conventional stations, especially for the vertical component ($$5.4\pm 0.8$$ 5.4 ± 0.8  mm). The tropospheric delays were compared with those retrieved from nearby GNSS reference stations (less than 30 km away) belonging to conventional networks (186 stations considered). The comparison shows a good agreement between low-cost and conventional stations, with a root mean square of differences of $$7.4\pm 3.0$$ 7.4 ± 3.0  mm; a mean bias of 2.7 mm is highlighted and shown to be stable over time; its origin has not yet been determined but its magnitude seems related to the antenna type of the CentipedeRTK stations. In a second step, the integrated water vapor content were derived from the tropospheric delays and compared with those of the European Centre for Medium-range Weather Forecasts fifth reanalysis (ERA5). Only stations located at an altitude less than 100 m around the ERA5 orography were considered (240 stations). The differences between the two techniques are similar to those reported in the literature for traditional networks, with a mean bias of $$0.06\pm 0.82$$ 0.06 ± 0.82  kg m$$^{-2}$$ - 2 and a mean standard deviation of $$1.48\pm 0.18$$ 1.48 ± 0.18  kg m$$^{-2}$$ - 2 . This again confirms the quality of the dataset. Finally, the value of such low-cost stations for monitoring and describing meteorological phenomena is illustrated by the study of an atmospheric river affecting the central–western part of France in December 2023. All these results underline the considerable potential of low-cost GNSS networks in geoscience applications, especially in regions with limited instrumentation. Their role could be particularly important in meteorological or climatological contexts, where GNSS-based water vapor monitoring is widely used.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3