Virtual reference station-based computerized ionospheric tomography

Author:

Lu WeijunORCID,Ma Guanyi,Wan Qingtao,Li Jinghua,Wang Xiaolan,Fu Weizheng,Maruyama Takashi

Abstract

AbstractIn computerized ionospheric tomography (CIT) with ground-based GNSS, the voxels without satellite-receiver ray traversing cannot be reconstructed directly. We present a CIT algorithm based on virtual reference stations (VRSs), called VRS–CIT, to decrease the number of unilluminated voxels and improve the precision of the estimated ionospheric electron density (IED). The VRSs are set at the nodes of grids with a 0.5° × 0.5° resolution in longitude and latitude. We generate the virtual observations with the observations from nearby six or three stations selected according to azimuths and distances. The generation utilizes multi-quadric surface fitting with six stations and triangular linear interpolation with three stations. With the virtual observations added, the IED distribution is reconstructed by the multiplicative algebraic reconstruction technique with the initial values obtained from IRI-2016. The performance of VRS–CIT is examined by using the data from 127 GNSS stations located in 24–46° N and 122–146° E to derive the IED every 30 min. The study focuses on April 29, 2014, with the adaptability of VRS–CIT analyzed by 12 days, evenly distributed around equinoxes and solstices of 2014. The accuracy of the virtual observation is about 1 TECU. Comparing to that derived from CIT with only real observations, the unsolvability of VRS–CIT declined by 4–12% for the whole region, and for the main area, the improvement can be up to 70%. Taking two IED profiles from radio occultation as reference measurements, the mean absolute error (MAE) of IED by VRS–CIT decreases by 6.88% and 8.43%, respectively. Comparing with slant total electron content (STEC) extracted from five additional GNSS stations, the MAE and the root mean square error of the estimated STEC can be reduced up to 17.24% and 33.81%, respectively.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3