Clock bias prediction algorithm for navigation satellites based on a supervised learning long short-term memory neural network

Author:

Huang BohuaORCID,Ji Zengxi,Zhai Renjian,Xiao Changfu,Yang Fan,Yang Bohang,Wang Yupu

Abstract

AbstractIn a satellite navigation system, high-precision prediction of satellite clock bias directly determines the accuracy of navigation, positioning, and time synchronization and is the key to realizing autonomous navigation. To further improve satellite clock bias prediction accuracy, we establish a satellite clock bias prediction model by using long short-term memory (LSTM) that can accurately express the nonlinear characteristics of the navigation satellite clock bias. Outliers in the original clock bias should be preprocessed before using the clock bias for prediction. By analyzing the working principle of the traditional median absolute deviations method, the ambiguity of the mathematical model of that method was improved. Experimental results show that the improved method is better than the traditional method at detecting gross errors. The single difference sequence of the preprocessed satellite clock bias was taken as the research object. First, a quadratic polynomial model was fit to the trend term of the single difference sequence. Second, based on the LSTM neural network model and the basic principles of supervised learning, a supervised learning LSTM network model (SL-LSTM) was proposed that models cyclic and random terms. Finally, the prediction function of the satellite clock bias was realized by extrapolating the model by adding a trend term. We adopt the GPS precision satellite clock bias of International GNSS Service data forecast experiments and apply wavelet neural network (WNN), autoregressive integrated moving average (ARIMA), and quadratic polynomial (QP) models to compare their prediction effects. The average prediction RMSE for 3 h, 6 h, 12 h, 1 d, and 3 d based on the SL-LSTM improved by approximately −21.80, −1.85, 8.57, 2.27, and 40.79%, respectively, compared with the results of the WNN. The average prediction RMSE based on the SL-LSTM improved by approximately 38.23, 65.48, 80.22, 85.18, and 94.51% compared with the ARIMA results. The average prediction RMSE based on the SL-LSTM improved by approximately 82.37, 75.88, 67.24, 45.71, and 58.22% compared with the QP results. Compared with the WNN, the SL-LSTM method has no obvious advantages in the prediction accuracy and stability in short-term prediction but achieves a better long-term prediction accuracy and stability. With an increased prediction duration, the SL-LSTM method is clearly better than the other three methods in terms of the prediction accuracy and stability. The results indicated that the quality of satellite clock bias prediction by the SL-LSTM method is better than that of the above three methods and is more suitable for the middle- and long-term prediction of satellite clock bias.

Funder

ZHU XIANGWEI

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3