Ionosphere-weighted undifferenced and uncombined PPP-RTK: theoretical models and experimental results

Author:

Zha JiupingORCID,Zhang Baocheng,Liu Teng,Hou Pengyu

Abstract

AbstractPrecise ionospheric information, as like precise satellite orbits, clocks, and code/phase biases, is a critical factor for achieving fast integer ambiguity resolution in precise point positioning (PPP-AR). This study develops an ionosphere-weighted (IW) undifferenced and uncombined PPP real-time kinematic (PPP-RTK) network model using code and phase observations. We introduce between-station single-differenced ionospheric delay pseudo-observations to take advantage of the similar characteristics of ionospheric delays between two receivers tracking the same satellite. The estimable ionospheric parameters are commonly affected by the differential code bias referring to a particular receiver assigned as pivot, which facilitates the ionospheric interpolation at the user side. Then, the kinematic positioning performance of the IW PPP-RTK user model is analyzed and compared with those of PPP-AR without ionospheric corrections, RTK, and IW-RTK models during low and high solar activity days. The results show that for the PPP-RTK model, the positioning errors converge to thresholds of 2 cm for the horizontal components and 5 cm for the vertical component within 20 epochs, and the positioning errors become stable after an initialization of 20 epochs with root-mean-squared (RMS) values of approximately 0.47, 0.58 and 1.66 cm for the east, north and up components, respectively, which are superior to those of the other three models. Owing to the high ionospheric disturbance influence, the RMS values of the east and up components increase by approximately double and the mean time-to-first-fix increases by 61.5% for the PPP-RTK case.

Funder

National Natural Science Foundation of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

CAS Pioneer Hundred Talents Program

Key Research and Development Plan of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3