Abstract
AbstractIonosphere Associate Analysis Centers (IAACs) of the International GNSS Service (IGS) independently produce global ionosphere maps (GIMs) of the total electron content (TEC). The GIMs are based on different modeling techniques, resulting in different TEC levels and accuracies. In this study, we evaluated the accuracy and consistency of the IAAC GIMs during high (2014) and low (2018) solar activity periods of the 24th solar cycle. In our study, we applied two different evaluation methods. First, we carried out a comparison of the GIM-derived slant TEC (STEC) with carrier phase geometry-free combination of GNSS signals obtained from 25 globally distributed stations. Second, vertical TEC (VTEC) from GIMs was compared to altimetry-derived VTEC obtained from the Jason-2 and Jason-3 satellites and complemented for plasmaspheric TEC. The analyzed GIMs obtained STEC RMS values reaching from 1.98 to 3.00 TECU and from 0.96 to 1.29 TECU during 2014 and 2018, respectively. The comparison to altimetry data resulted in VTEC STD values that varied from 3.61 to 5.97 TECU and from 1.92 to 2.78 TECU during 2014 and 2018, respectively. The results show that among the IAACs, the Center for Orbit Determination in Europe global maps performed best in low and high solar activity periods. However, the highest accuracy was obtained by a non-IGS product—UQRG GIMs provided by Universitat Politècnica de Catalunya. It was also shown that the best results were obtained using a modified single layer model mapping function and that the map time interval has a relatively small influence on the resulting map accuracy.
Funder
Polish National Center of Science
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献