Abstract
AbstractFuture generations of global navigation satellite systems (GNSSs) can benefit from optical technologies. Especially optical clocks could back-up or replace the currently used microwave clocks, having the potential to improve GNSS position determination enabled by their lower frequency instabilities. Furthermore, optical clock technologies—in combination with optical inter-satellite links—enable new GNSS architectures, e.g., by synchronization of distant optical frequency references within the constellation using time and frequency transfer techniques. Optical frequency references based on Doppler-free spectroscopy of molecular iodine are seen as a promising candidate for a future GNSS optical clock. Compact and ruggedized setups have been developed, showing frequency instabilities at the 10–15 level for averaging times between 1 s and 10,000 s. We introduce optical clock technologies for applications in future GNSS and present the current status of our developments of iodine-based optical frequency references.
Funder
DLR
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献