Improving GNSS PPP-RTK through global forecast system zenith wet delay augmentation

Author:

Gao Rui,Liu Zhizhao,Odolinski Robert,Zhang Baocheng

Abstract

AbstractThe precise point positioning real-time kinematic (PPP-RTK) is a high-precision global navigation satellite system (GNSS) positioning technique that combines the advantages of wide-area coverage in precise point positioning (PPP) and of rapid convergence in real-time kinematic (RTK). However, the PPP-RTK convergence is still limited by the precision of slant ionospheric delays and tropospheric zenith wet delay (ZWD), which affects the PPP-RTK network parameters estimation and user positioning performance. The present study aims to construct a PPP-RTK model augmented with a priori ZWD values derived from the global forecast system (GFS) product (a global numerical weather prediction (NWP) model) to improve the PPP-RTK performance. This study gives a priori ZWD values and conversion based on the GFS products, and the full-rank GFS-augmented undifferenced and uncombined (UDUC) PPP-RTK network model is derived. To verify the performance of GFS-augmented UDUC PPP-RTK, a comprehensive evaluation using 10-day GNSS observation data from three different GNSS station networks in the United States (US), Australia, and Europe is conducted. The results show that with the GFS ZWD a priori information, PPP-RTK performance significantly improves at the initial filtering stage, but this advantage gradually decays over time. Based on 10-day positioning results for all user stations, the GFS ZWD-augmented PPP-RTK approach reduces the average convergence time by 46% from 10.0 to 5.4 min, the three-dimensional root-mean-square (3D-RMS) error by 5.7% from 3.5 to 3.3 cm, and the time to first fix (TTFF) value by 35.8% from 6.7 to 4.3 min, all when compared to the traditional PPP-RTK without GFS ZWD constraints.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3