Author:
Vergados Panagiotis,Krishnamoorthy Siddharth,Martire Léo,Mrak Sebastijan,Komjáthy Attila,Morton Yu T. Jade,Vilibić Ivica
Abstract
AbstractWe study, for the first time, the physical coupling and detectability of meteotsunamis in the earth’s atmosphere. We study the June 13, 2013 event off the US East Coast using Global Navigation Satellite System (GNSS) radio occultation (RO) measurements, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures, and ground-based GNSS ionospheric total electron content (TEC) observations. Hypothesizing that meteotsunamis also generate gravity waves (GWs), similar to tsunamigenic earthquakes, we use linear GW theory to trace their dynamic coupling in the atmosphere by comparing theory with observations. We find that RO data exhibit distinct stratospheric GW activity at near-field that is captured by SABER data in the mesosphere with increased vertical wavelength. Ground-based GNSS-TEC data also detect a far-field ionospheric response 9 h later, as expected by GW theory. We conclude that RO measurements could increase understanding of meteotsunamis and how they couple with the earth’s atmosphere, augmenting ground-based GNSS TEC observations.
Funder
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献