Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes

Author:

Seyedashraf Omid,Bottacin-Busolin AndreaORCID,Harou Julien J.

Abstract

AbstractSustainable urban drainage systems are multi-functional nature-based solutions that can facilitate flood management in urban catchments while improving stormwater runoff quality. Traditionally, the evaluation of the performance of sustainable drainage infrastructure has been limited to a narrow set of design objectives to simplify their implementation and decision-making process. In this study, the spatial design of sustainable urban drainage systems is optimized considering five objective functions, including minimization of flood volume, flood duration, average peak runoff, total suspended solids, and capital cost. This allows selecting an ensemble of admissible portfolios that best trade-off capital costs and the other important urban drainage services. The impact of the average surface slope of the urban catchment on the optimal design solutions is discussed in terms of spatial distribution of sustainable drainage types. Results show that different subcatchment slopes result in non-uniform distributional designs of sustainable urban drainage systems, with higher capital costs and larger surface areas of green assets associated with steeper slopes. This has two implications. First, urban areas with different surface slopes should not have a one-size-fits-all design policy. Second, spatial equality must be taken into account when applying optimization models to urban subcatchments with different surface slopes to avoid unequal distribution of environmental and human health co-benefits associated with green drainage infrastructure.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3