Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11269-023-03731-6.pdf
Reference43 articles.
1. Achite M, Ceribasi G, Ceyhunlu AI, Wałęga A, Caloiero T (2021) The innovative polygon trend analysis (IPTA) as a simple qualitative method to detect changes in environment—example detecting trends of the total monthly precipitation in semiarid area. Sustainability (Switzerland) 13(22). https://doi.org/10.3390/su132212674
2. Ahmed N, Wang G, Booij MJ, Ceribasi G, Bhat MS, Ceyhunlu AI, Ahmed A (2022) Changes in monthly streamflow in the Hindukush–Karakoram–Himalaya Region of Pakistan using innovative polygon trend analysis. Stoch Env Res Risk Assess 36(3):811–830. https://doi.org/10.1007/s00477-021-02067-0
3. Al-Najjar H, Ceribasi G, Ceyhunlu AI (2021) Effect of unconventional water resources interventions on the management of Gaza coastal aquifer in Palestine. Water Supply 21(8):4205–4218. https://doi.org/10.2166/ws.2021.170
4. Anderson S, Radić V (2022) Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling. Hydrol Earth Syst Sci 26(3):795–825. https://doi.org/10.5194/hess-26-795-2022
5. Feng ZK, Niu WJ, Tang ZY, Jiang ZQ, Xu Y, Liu Y, Zhang HR (2020) Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J Hydrol 583. https://doi.org/10.1016/j.jhydrol.2020.124627
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coupling SWAT and LSTM for Improving Daily Streamflow Simulation in a Humid and Semi-humid River Basin;Water Resources Management;2024-09-12
2. Runoff Prediction for Hydrological Applications Using an INFO-Optimized Deep Learning Model;Processes;2024-08-22
3. Research on Optimal Selection of Runoff Prediction Models Based on Coupled Machine Learning Methods;2024-08-13
4. Advancing Spatiotemporal Pollutant Dispersion Forecasting with an Integrated Deep Learning Framework for Crucial Information Capture;Sustainability;2024-05-27
5. Forecasting Future Groundwater Recharge from Rainfall Under Different Climate Change Scenarios Using Comparative Analysis of Deep Learning and Ensemble Learning Techniques;Water Resources Management;2024-04-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3