Improving Hydrological Modeling with Hybrid Models: A Comparative Study of Different Mechanisms for Coupling Deep Learning Models with Process-based Models
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11269-024-03780-5.pdf
Reference32 articles.
1. Ayzel G, Heistermann M (2021) The effect of calibration data length on the performance of a conceptual hydrological model versus lstm and gru: A case study for six basins from the camels dataset. Comput Geosci 149:104708. https://doi.org/10.1016/j.cageo.2021.104708
2. Bárdossy A, Anwar F (2023) Why do our rainfall-runoff models keep underestimating the peak flows? Hydrol Earth Syst Sci 27(10):1987–2000. https://doi.org/10.5194/hess-27-1987-2023
3. Bergström S (1992) The HBV model-Its structure and applications. SMHI Reports RH 4, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
4. Chen X, Wang S, Gao H et al (2022) Comparison of deep learning models and a typical process-based model in glacio-hydrology simulation. J Hydrol 615:128562. https://doi.org/10.1016/j.jhydrol.2022.128562
5. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031. https://doi.org/10.1029/91WR02985
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing the streamflow simulation of a process-based hydrological model using machine learning and multi-source data;Ecological Informatics;2024-09
2. Development of A Distributed Modeling Framework Considering Spatiotemporally Varying Hydrological Processes for Sub-Daily Flood Forecasting in Semi-Humid and Semi-Arid Watersheds;Water Resources Management;2024-04-24
3. A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control;Water Resources Management;2024-04-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3