A Method for Predicting Long-Term Municipal Water Demands Under Climate Change
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-020-02500-z.pdf
Reference54 articles.
1. Abrahart RJ, Kneale PE, See LM (2004) Neural Networks for Hydrological Modelling. Taylor & Francis Group plc, London
2. Adamowski JF (2008) Peak daily water demand forecast modeling using artificial neural networks. J Water Resour Plan Manag 134:119–128
3. Ahmed M, Mohamed A, Homod R, Shareef H (2016) Hybrid LSA-ANN based home energy management scheduling controller for residential demand response strategy. Energies 9:716
4. Al-Bugharbee H, Trendafilova I (2016) A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling. J Sound Vib 369:246–265
5. Altunkaynak A, Nigussie TA (2018) Monthly water demand prediction using wavelet transform, first-order differencing and linear detrending techniques based on multilayer perceptron models. Urban Water J 15:177–181
Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comprehensive survey of artificial intelligence techniques and strategies for climate change mitigation;Energy;2024-11
2. Reliable multi-horizon water demand forecasting model: A temporal deep learning approach;Sustainable Cities and Society;2024-10
3. A Critical Review of RNN and LSTM Variants in Hydrological Time Series Predictions;MethodsX;2024-09
4. Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN;Journal of Risk and Financial Management;2024-08-23
5. Efficiency of <i>Carica papaya</i> Seeds in the Coagulation of Moderately Turbid Wastewater;Advances in Science and Technology;2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3