Assessing Subaquatic Mass Movement Hazards: an Integrated Observational and Hydrodynamic Modelling Approach

Author:

Råman Vinnå LoveORCID,Bouffard DamienORCID,Wüest AlfredORCID,Girardclos StéphanieORCID,Dubois NathalieORCID

Abstract

AbstractHigh-resolution lake and reservoir bathymetric surveys can pinpoint locations that may experience underwater landslides (subaquatic sedimentary mass movements). These can pose a risk to underwater and shoreline infrastructure. This paper outlines an approach for using spatial variation in sedimentary patterns to identify areas susceptible to subaquatic mass movements in lakes and reservoirs. This study focusses on Lake Biel (Switzerland), which has experienced a protracted history of upstream alteration of river flow. Altered flow patterns increase risk of unstable sedimentary features and subaquatic mass movements. Data from sediment traps and cores, Acoustic Doppler Current Profilers and results from a 3D hydrodynamic model gave a consistent picture of spatial and temporal variation in weather-related sedimentation. Erosion caused by short-term rain events contributes the largest proportion of sediments to the lake. Strong rain events combine with typical wind patterns to drive lake circulation. The net effect results in preferential sedimentation onto a steeply sloping shelf prone to subaquatic slides. The integrated approach outlined here incorporates short- and long-term sediment dynamics to provide a systematic assessment of lake sedimentation and potential mass movement hazards. This research represents a first step in developing a risk-evaluation tool for aquatic hazard evaluation.

Funder

This manuscript is part of the project “Hydrodynamic modeling of Lake Biel for optimizing the Ipsach drinking water intake” funded by Energy Service Biel.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3