Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-016-1316-8.pdf
Reference38 articles.
1. Akhtar MJ, Utne IB (2014) Human fatigue’s effect on the risk of maritime groundings – A Bayesian Network modeling approach. Saf Sci 62:427–440. doi: 10.1016/j.ssci.2013.10.002
2. Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B (2004) Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med 30:257–281
3. Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems. Manag Water Res Manag 20:133–149. doi: 10.1007/s11269-006-4635-3
4. Besner M-C, Prévost M, Regli S (2011) Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges. Water Res 45:961–979. doi: 10.1016/j.watres.2010.10.035
5. Bouejla A, Chaze X, Guarnieri F, Napoli A (2014) A Bayesian network to manage risks of maritime piracy against offshore oil fields. Saf Sci 68:222–230. doi: 10.1016/j.ssci.2014.04.010
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Implementation Water Loss by Smart Control Through the Internet of Things (IoT);Synthesis Lectures on Emerging Engineering Technologies;2024-08-06
2. Leakages in Water Distribution Networks: Estimation Methods, Influential Factors, and Mitigation Strategies—A Comprehensive Review;Water;2024-05-27
3. Water Pipeline Leakage Detection Based on Coherent φ-OTDR and Deep Learning Technology;Applied Sciences;2024-04-29
4. Domain-informed variational neural networks and support vector machines based leakage detection framework to augment self-healing in water distribution networks;Water Research;2024-02
5. Integrated dynamic multi-threshold pattern recognition with graph attention long short-term neural memory network for water distribution network losses prediction: An automated expert system;Engineering Applications of Artificial Intelligence;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3