Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-015-0977-z.pdf
Reference40 articles.
1. Arya FK, Zhang L (2015) Time series analysis of water quality parameters at Stillaguamish river using order series method. Stoch Env Res Risk A 29(1):227–239
2. Bao Y, Wang H, Wang BN (2014) Short-term wind power prediction using differential EMD and relevance vector machin. Neural Comput Appl 25(2):283–289
3. Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36(4):7624–7629
4. Chen YN, Xu ZX (2005) Plausible impact of global climate change on water resources in the Tarim river basin. Sci China Ser D 48(1):65–73
5. Di CL, Yang XH, Wang XC (2014) A four-stage hybrid model for hydrological time series forecasting. PloS One 9(8):E104663. doi: 10.1371/journal.pone.0104663
Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index;Natural Hazards;2024-07-03
2. Enhanced monthly streamflow prediction using an input–output bi-decomposition data driven model considering meteorological and climate information;Stochastic Environmental Research and Risk Assessment;2024-04-27
3. Photovoltaic output power estimation model based on multi-meteorological variable dimension reduction and improved variational mode decomposition algorithm;International Journal of Green Energy;2024-02-05
4. Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index;Water Science & Technology;2024-01-31
5. Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction;Expert Systems with Applications;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3