A Hybrid CNN-LSTM Approach for Monthly Reservoir Inflow Forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-023-03541-w.pdf
Reference49 articles.
1. Amnatsan S, Yoshikawa S, Kanae S (2018) Improved forecasting of extreme monthly reservoir inflow using an analogue-based forecasting method: a case study of the sirikit dam in Thailand. Water 10(11):1614
2. Babaei M, Moeini R, Ehsanzadeh E (2019) Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir). Water Resour Manag 33:2203–2218
3. Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36(4):7624–7629
4. Bozorg-Haddad O, Aboutalebi M, Ashofteh PS, Loáiciga HA (2018) Real-time reservoir operation using data mining techniques. Environ Monit Assess 190(10):1–22
5. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control, 4th edn. Wiley and Sons, New Jersey
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced attention-based spatial-temporal neural networks for enhanced CO2 water-alternating-gas performance prediction and history matching;Physics of Fluids;2024-09-01
2. Unveiling key drivers of economy-water system and transforming water use pattern into sustainable development: Inner-Shaan-Ning region in the Yellow River Basin;Journal of Cleaner Production;2024-09
3. From meteorological to agricultural drought: Propagation time and influencing factors over diverse underlying surfaces based on CNN-LSTM model;Ecological Informatics;2024-09
4. Streamflow forecasting with deep learning models: A side-by-side comparison in Northwest Spain;Earth Science Informatics;2024-08-23
5. Multimodal Fusion of Optimized GRU–LSTM with Self-Attention Layer for Hydrological Time Series Forecasting;Water Resources Management;2024-08-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3