Runoff Forecasting of Machine Learning Model Based on Selective Ensemble
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-023-03566-1.pdf
Reference39 articles.
1. Aceña V, De Diego IM, Fernández RR, Moguerza JM (2022) Minimally overfitted learners: A general framework for ensemble learning. Knowl-Based Syst 254:109669. https://doi.org/10.1016/j.knosys.2022.109669
2. Al-Daweri MS, Abdullah S, Ariffin KAZ (2021) A homogeneous ensemble based dynamic artificial neural network for solving the intrusion detection problem. Int J Crit Infrastruct Prot 34:100449. https://doi.org/10.1016/j.ijcip.2021.100449
3. Alobaidi MH, Ouarda TBMJ, Marpu PR, Chebana F (2021) Diversity-driven ANN-based ensemble framework for seasonal low-flow analysis at ungauged sites. Adv Water Resour 147:103814. https://doi.org/10.1016/j.advwatres.2020.103814
4. Bashir D, Montañez GD, Sehra S, Segura PS, Lauw J, Gallagher M, Moustafa N, Lakshika E (2020) An information-theoretic perspective on overfitting and underfittinglecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Science and Business Media Deutschland GmbH, p 347–358. https://doi.org/10.1007/978-3-030-64984-5_27
5. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Runoff Prediction for Hydrological Applications Using an INFO-Optimized Deep Learning Model;Processes;2024-08-22
2. Research on Optimal Selection of Runoff Prediction Models Based on Coupled Machine Learning Methods;2024-08-13
3. Prediction of Ship Painting Man-Hours Based on Selective Ensemble Learning;Coatings;2024-03-06
4. Improving Multivariate Runoff Prediction Through Multistage Novel Hybrid Models;Water Resources Management;2024-02-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3