Quantifying the Inter- and Intra-Annual Variations in Regional Water Consumption and Scarcity Incorporating Water Quantity and Quality

Author:

Yin Fei,Xu Chang-xin

Abstract

AbstractWater stress due to poor water quality has been becoming severe in many places across the world. Comprehensive water utility and water scarcity assessments require information integrating both water quantity and quality. While massive attentions have been paid to water quantity scarcity evaluations, little effort has been made to assess inter-annual variations of regional water scarcity resulting from both water quantity and quality. The study, taking water-abundant while stressed Jiangsu province (JSP) in eastern China as the study area, investigated (i) the development in green, blue and grey water footprint (WFs) for crop production, over 1986–2016, (ii) the inter-annual evolutions in blue and grey WFs for industry and households over 2010–2016 and (iii) the associated inter- and intra-annual variations in water scarcities resulting from water quantity and quality. Results showed that the annual total WF of crop production in JSP increased by 18% between 1986 and 2016. Grey WF accounted for 77% of the total WF at an annual average level. Crop production occupied 61% and household accounted for 34% in the total grey WF related to N. The monthly blue water scarcity levels in JSP increased by 4 (October 2016) – 62 (February 2012) folders when water quality effects were taken into account. The wetter the year, the lower the blue water scarcity of water quality and quantity. As a sensitive and crucial region with both severe water pollution scarcity and the role of water source region in the huge South-to-North water transfer project, it is of great necessity to enhance the water pollution management and increase information transparency among water authorities and consumers.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Reference45 articles.

1. Alcamo J, Henrichs T, Rosch T (2000). World water in 2025: global modeling and scenario analysis for the world commission on water for the 21st century. Report A0002. Kassel, Germany: Center for Environmental Systems Research, University of Kassel

2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome. 300, D05109

3. Barnett J, Rogers S, Webber M, Finlayson B, Wang M (2015) Sustainability: transfer project cannot meet China's water needs. Nature 527(7578):295–297

4. Batjes, N. (2012) ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2). ISRIC

5. Bayart JB, Bulle C, Deschenes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3