Criticality of Isolation Valves in Water Distribution Networks with Hydraulics and Topology

Author:

Wéber RichárdORCID,Huzsvár Tamás,Déllei Ákos,Hős Csaba

Abstract

AbstractOccasional, random pipe bursts are inevitable in water distribution networks; thus, properly operating isolation valves is critical. During a shutdown, the damaged segment is segregated using the neighbouring valves, causing the smallest isolation possible. This study analyses the importance of isolation valves individually from the perspective of the demand shortfall increment. An in-house, open-source software called STACI performs demand-driven simulations to solve the hydraulic equations with pressure-dependent demand determining the nodal pressures, the volumetric flow rates, and the consumption loss. The system has an additional consumption loss if an isolation valve cannot be closed. The criticality of an isolation valve is the increment in the relative demand shortfall caused by its malfunction. Moreover, centrality indices from complex network theory are applied to estimate the criticality without the need for computationally expensive hydraulic simulations. The distribution of criticality values follows a power-law trend, i.e. some of the isolation valves have significantly higher importance during a shutdown. Moreover, Spearman’s rank correlation coefficients between the centrality and criticality values indicate limited applicability. The criticality analysis can highlight which isolation valves have higher importance during reconstruction planning or maintenance. The Katz and the Degree centrality show a moderate positive correlation to the criticality, i.e., if numerous hydraulic simulations are not feasible, these quantities give an acceptable estimate.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing a Simplified Practical Approach for Analyzing the Criticality of Isolation Valves;Journal of Water Resources Planning and Management;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3