Reservoir Inflow Modeling Using Temporal Neural Networks with Forgetting Factor Approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-008-9263-7.pdf
Reference25 articles.
1. Ahmed JA, Sarma AK (2007) ‘Artificial neural network model for synthetic streamflow generation. Water Resour Manage 21(6):1015–1029, Springer Netherlands
2. Altunkaynak A (2007) Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour Manage 21(2):399–408, Springer Netherlands
3. Anmala J, Zhang B, Govindaraju RS (2000) Comparison of ANNs and empirical approaches for predicting watershed runoff. J Water Resour Plng Mgmt ASCE 126(3):156–166
4. Araghinejad S, Burn DH, Karamouz M (2006) Long-lead streamflow forecasting using ocean-atmospheric and hydrological predictors. Water Resour Res 42(3):W03431, DOI 10.1029/2004WR003853
5. Atiya A, Parlos A (1992) Nonlinear system identification using spatiotemporal neural networks. In Proc. Intl. Joint Conf. on neural networks, Baltimore, MD, vol. 2, pp. 504–509, The IEEE, Inc., Piscataway, NJ
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence methods in water systems research – a literature review;Geological Quarterly;2024-05-14
2. Exploding the myths: An introduction to artificial neural networks for prediction and forecasting;Environmental Modelling & Software;2023-09
3. Operational, Economic and Environmental Advantages of Applying Artificial Intelligence in Dam Operations: an approach based on artificial neural networks and Monte Carlo simulation method for floodgate operation;2022-12-20
4. A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast;Water Resources Management;2022-07-14
5. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling;Environmental Modelling & Software;2021-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3