A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows

Author:

Rosin T. R.ORCID,Romano M.,Keedwell E.,Kapelan Z.

Abstract

AbstractCombined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, spilling untreated wastewater directly into water bodies and the surrounding environment. If overflows can be predicted sufficiently in advance, then techniques are available for mitigation. This paper presents a novel bi-model committee evolutionary artificial neural network (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h ahead using inputs of past/current CSO level data, radar rainfall data and forecast forecasted rainfall data. The model is composed of two evolutionary artificial neural network (EANN) models. The two models are trained and optimised for wet and dry weather conditions respectively and their results combined into a single response using a non-linear weighted averaging approach. An evolutionary strategy algorithm is employed to automatically select the optimal artificial neural network (ANN) structure and parameter set, allowing the network to be tailored specifically for different CSO locations and forecast horizons without significant human input. The CEANN model was tested and evaluated on real level data from 4 CSOs located in Northern England and the results compared to three other ANN models. The results demonstrate that the CEANN model is superior in terms of accuracy for almost all forecast horizons considered. It is able to accurately forecast the dry weather and wet weather level, predicting the timing and magnitude of upcoming spill events, thus providing information that is of clear use to a wastewater utility.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3