Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models: Case of the Algerois Basin in North Algeria
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11269-016-1298-6.pdf
Reference51 articles.
1. Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91
2. Akaike H (1974) A look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723
3. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. I. Preliminary concepts. J Hydrol Eng 5(2):124–137
4. Aussem A, Campbell J, Murtagh F (1998) Wavelet-based feature extraction and decomposition strategies for financial forecasting. J Comput Intel Finan 6(2):5–12
5. Avilès A, Célleri R, Paredes J, Solera A (2015) Evaluation of Markov chain based drought forecasts in an Andean regulated River Basin using the skill scores RPS and GMSS. Water Resour Manag 29:1949–1963
Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Attribution of hydrological droughts in large river-connected lakes: Insights from an explainable machine learning model;Science of The Total Environment;2024-11
2. Prediction of Precipitation-Temperature Data and Drought Assessment of Turkey with Stochastic Time Series Models;Pure and Applied Geophysics;2024-08-19
3. Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform;KSCE Journal of Civil Engineering;2024-08-06
4. Improving Drought Prediction Accuracy: A Hybrid EEMD and Support Vector Machine Approach with Standardized Precipitation Index;Water Resources Management;2024-06-29
5. Utilizing machine learning and CMIP6 projections for short-term agricultural drought monitoring in central Europe (1900–2100);Journal of Hydrology;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3