Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System
Author:
Funder
National Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11269-022-03177-2.pdf
Reference30 articles.
1. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
2. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Paktunc D, Gould WD, Johnson DB (2014) The Geochemistry of Acid Mine Drainage. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. 2nd edn. Elsevier, Oxford, p 131–190. https://doi.org/10.1016/B978-0-08-095975-7.00905-0
3. Boulesteix AL, Janitza S, Kruppa J, König IR (2012) Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wires Data Mining Knowl Discov 2(6):493–507. https://doi.org/10.1002/widm.1072
4. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
5. Chatfield C (2000) Time-series forecasting. Chapman and Hall/CRC, London Manaswi NK (2018) Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-3516-4
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Indirect Freeze Crystallization—An Emerging Technology for Valuable Resource Recovery from Wastewater;Minerals;2024-04-20
2. Comparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainage;Environmental Monitoring and Assessment;2024-03-02
3. Quantitative Evaluation Method and Response Mechanism of Shallow Groundwater in Multi-Mine Mining of “Soil–Rock” Composite Water-Resisting Strata;Water;2024-02-28
4. Prediction of total dissolved solids, based on optimization of new hybrid SVM models;Engineering Applications of Artificial Intelligence;2023-11
5. An autoencoder-based stacked LSTM transfer learning model for EC forecasting;Earth Science Informatics;2023-09-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3